PRACTICE PROBLEMS FOR MIDTERM 1 MATH 430, SPRING 2014

Problem 1. Determine if the following are tautologies: $(a) \ (R \to (S \lor Q)) \lor (R \lor (S \to Q))$ (b) $(R \leftrightarrow P) \lor (P \rightarrow \neg R)$

Problem 2. Prove or refute the following: (a) If $\Sigma \models (\alpha \land \beta)$, then $\Sigma \models \alpha$ and $\Sigma \models \beta$ (b) If $\Sigma \models (\alpha \lor \beta)$, then $\Sigma \models \alpha$ or $\Sigma \models \beta$

Problem 3. Let S be the set of all sentence symbols, and let \overline{S} be the set of all (sentential) formulas built up from S. Fix a truth assignment $\nu: S \to \{T, F\}$. Without using the recursion theorem, show that there is at most one extension $\bar{\nu}: S \to \{T, F\}$ satisfying the truth table conditions.

Problem 4. Show that $\{\land,\leftrightarrow,+\}$ is complete, but $\{\land,+\}$ is not complete. Here $\alpha + \beta$ means $(\alpha \lor \beta) \land \neg (\alpha \land \beta)$ i.e. either α or β is true, but not both.

Problem 5. Show that $\{\bot, \rightarrow\}$ is complete, but $\{\land, \rightarrow\}$ is not complete.

Problem 6. Show that $\{\rightarrow, +\}$ is complete, but $\{\leftrightarrow, +\}$ is not complete.

Problem 7. Recall that the corollary to the Compactness theorem states that if $\Sigma \models \tau$, then there is some finite $\Delta \subset \Sigma$ such that $\Delta \models \tau$. Show that the Compactness theorem is equivalent to this corollary. (Prove both directions.)

Problem 8. Suppose Σ is satisfiable and complete (i.e. for every formula ϕ , either $\phi \in \Sigma$ or $\neg \phi \in \Sigma$). Define a truth assignment v by v(A) = T iff $A \in \Sigma$. Show that for each $\phi \in \Sigma$, $\bar{v}(\phi) = T$ iff $\phi \in \Sigma$.

Problem 9. Write the following in the first order language of set theory, $\mathcal{L} = \{\in\}, as follows: first write down the sentence using symbols among$ $\{\neg, \lor, \land, \rightarrow, \leftrightarrow, \forall, \exists, \in, =\}$ and variables. Then rewrite the expression using only symbols among $\{\neg, \rightarrow, \forall, \in, =\}$ and variables (unless of course the already written expression is in this form).

(a) x is a subset of y.

(b) The power set of x is equal to the power set of y. (The power set of x, denoted $\mathcal{P}(x)$, is the set of all subsets of x.)

(c) The well foundedness axiom: every nonempty set x has an element y, such that no other element of x belongs to y.

Problem 10. Let P be a two-place predicate. Consider the formula:

$$\phi = "\forall x \exists y P(x, y) \to \exists y \forall x P(x, y)"$$

- (1) Give an example of a model in which ϕ is false.
- (2) Give an example of a model in which ϕ is true.

(Note that when you describe the model, you have to say what is the interpretation of P.)